Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Nat Commun ; 15(1): 3418, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653990

RESUMO

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

2.
Phys Rev Lett ; 132(10): 106601, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518320

RESUMO

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect. Here, we combine experiment and first-principles calculations to show that the kagome ferromagnet Fe_{3}Sn_{2} displays such a magneto-nonlinear Hall effect. By systematic field angular and temperature-dependent transport measurements, we unambiguously identify a large anomalous Hall current that is linear in both applied in-plane electric and magnetic fields, utilizing a unique in-plane configuration. We clarify its dominant orbital origin and connect it to the magneto-nonlinear Hall effect. The effect is governed by the intrinsic quantum geometric properties of Bloch electrons. Our results demonstrate the significance of the quantum geometry of electron wave functions from the orbital degree of freedom and open up a new direction in Hall transport effects.

3.
Adv Mater ; : e2311591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2 ) and silicon nitride (SiNx ). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx /Si and SiO2 /Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

4.
Clin Pharmacol ; 16: 27-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225988

RESUMO

Dexmedetomidine is a selective and potent α2-adrenoceptor agonist used for sedation, analgesia, and anxiolysis, with minimal respiratory depression; therefore, it is widely used in clinical practice. Transient hypertension has been reported to be an indication for the use of dexmedetomidine. The authors report three female patients who experienced hypertensive crisis when used atropine to treat bradycardia caused by dexmedetomidine. The transient hypertension is a relatively common side effect of dexmedetomidine, hypertensive crisis seen with coadministration of atropine is much less frequently reported. This is the first report to describe the use of atropine to treat bradycardia induced by dexmedetomidine, which may cause severe hypertension in female patients. They discuss the reason for and treatment of hypertension caused by administration of atropine and dexmedetomidine together and review the relevant literature.

5.
Phys Rev Lett ; 132(2): 020601, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277590

RESUMO

Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.

6.
J Cell Mol Med ; 28(2): e18053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014923

RESUMO

Immune disorders caused by sepsis have recently drawn much attention. We sought to dynamically monitor the expression of small extracellular vesicle (sEV) miRNAs in peripheral blood during sepsis to explore these miRNAs as potential biomarkers for monitoring immune function in sepsis patients. This study included patients with sepsis. Blood samples were obtained from 10 patients on the first through 10th days, the 12th day and the 14th day since sepsis onset, resulting in 120 collected samples. Serum sEVs were extracted from peripheral venous blood, and levels of MIR497HG, miR-195, miR-497, and PD-L1 in serum sEVs were detected by qPCR, and clinical information was recorded. Our study revealed that the levels of MIR497HG, miR-195, miR-497 and PD-L1 in serum sEVs showed periodic changes; the time from peak to trough was approximately 4-5 days. The levels of sEV MIR497HG and miR-195 had a positive linear relationship with SOFA score (r values were -0.181 and -0.189; p values were 0.048 and 0.039, respectively). The recorded quantities of sEV MIR497HG, miR-195 and PD-L1 showed a substantial correlation with ARDS. ROC curve analysis revealed that sEV MIR497HG, miR-195 and miR-497 could predict the 28-day mortality of sepsis patients with an AUC of 0.66, 0.68 and 0.72, respectively. Levels of sEVs MIR497HG, miR-195, miR-497 and PD-L1 showed periodic changes with the immune status of sepsis, which provides a new exploration direction for immune function biomarkers and immunotherapy timing in sepsis patients.


Assuntos
Vesículas Extracelulares , MicroRNAs , Sepse , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Antígeno B7-H1/metabolismo , Sepse/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
7.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828069

RESUMO

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

8.
Nat Commun ; 14(1): 6162, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788988

RESUMO

Edge supercurrent has attracted great interest recently due to its crucial role in achieving and manipulating topological superconducting states. Proximity-induced superconductivity has been realized in quantum Hall and quantum spin Hall edge states, as well as in higher-order topological hinge states. Non-Hermitian skin effect, the aggregation of non-Bloch eigenstates at open boundaries, promises an abnormal edge channel. Here we report the observation of broad edge supercurrent in Dirac semimetal Cd3As2-based Josephson junctions. The as-grown Cd3As2 nanoplates are electron-doped by intrinsic defects, which enhance the non-Hermitian perturbations. The superconducting quantum interference indicates edge supercurrent with a width of ~1.6 µm and a magnitude of ~1 µA at 10 mK. The wide and large edge supercurrent is inaccessible for a conventional edge system and suggests the presence of non-Hermitian skin effect. A supercurrent nonlocality is also observed. The interplay between band topology and non-Hermiticity is beneficial for exploiting exotic topological matter.

10.
J Phys Condens Matter ; 35(41)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37402385

RESUMO

Liquid heliums are intriguing substance. Superfluid states below certain critical temperatures, notably liquid helium-4 and helium-3 exhibit ultra-high thermal conductivity ( TC) in the superfluid phase. However, the microscopic origin of the TC of liquid heliums in the normal phase remains unclear. In this work, we employ the thermal resistance network model to calculate the thermal conductivities of normal liquid helium-4 (He I) and helium-3. Predicted values are not only in good agreement with the measurements but also reproduce the experimental trend of TC increasing with temperature and pressure.

11.
Fish Shellfish Immunol ; 137: 108742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100309

RESUMO

The enteritis is a common disease in fish farming, but the pathogenesis is still not fully understood. The aim of the present study was to investigate the inducement of Dextran Sulfate Sodium Salt (DSS) intestinal inflammation on Orange-spotted grouper (Epinephelus coioides). The fish were challenged with 200 µl 3% DSS via oral irrigation and feeding, an appropriate dose based on the disease activity index of inflammation. The results indicated that the inflammatory responses induced by DSS were closely associated with the expression of pro-inflammatory cytokines including interleukin 1ß (IL-1ß), IL-8, IL16, IL-10 and tumor necrosis factor α (TNF-α), as well as NF-κB and myeloperoxidase (MPO) activity. At day5 after DSS treatment, the highest levels of all parameters were observed. Also, the severe intestinal lesions (intestinal villus fusion and shedding), strong inflammatory cell infiltration and microvillus effacement were seen through histological examination and SEM (scanning electronic microscopy) analysis. During the subsequent 18 days of the experimental period, the injured intestinal villi were gradually recovery. These data is beneficial to further investigate the pathogenesis of enteritis in farmed fish, which is helpful for the control of enteritis in aquaculture.


Assuntos
Bass , Enterite , Animais , Bass/metabolismo , Sulfato de Dextrana/efeitos adversos , Inflamação , Enterite/induzido quimicamente , Enterite/veterinária , Citocinas/metabolismo
12.
Phys Rev Lett ; 130(9): 096701, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930935

RESUMO

We report on coherent propagation of antiferromagnetic (AFM) spin waves over a long distance (∼10 µm) at room temperature in a canted AFM α-Fe_{2}O_{3} owing to the Dzyaloshinskii-Moriya interaction (DMI). Unprecedented high group velocities (up to 22.5 km/s) are characterized by microwave transmission using all-electrical spin wave spectroscopy. We derive analytically AFM spin-wave dispersion in the presence of the DMI which accounts for our experimental results. The AFM spin waves excited by nanometric coplanar waveguides have large wave vectors in the exchange regime and follow a quasilinear dispersion relation. Fitting of experimental data with our theoretical model yields an AFM exchange stiffness length of 1.7 Å. Our results provide key insights on AFM spin dynamics and demonstrate high-speed functionality for AFM magnonics.

13.
Nature ; 616(7955): 56-60, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949191

RESUMO

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time1. In most QEC codes2-8, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios9-17. However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture18, where the logical qubit is binomially encoded in photon-number states of a microwave cavity8, dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation19.

15.
Gene ; 865: 147332, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36871675

RESUMO

As a universal adaptor used by most TLR members, the myeloid differentiation factor 88 (MyD88) plays essential roles in TLR-mediated inflammatory response of invertebrate and vertebrate animals, and functional features of MyD88 remain largely unknown in amphibians. In this study, a MyD88 gene named Xt-MyD88 was characterized in the Western clawed frog (Xenopus tropicalis). Xt-MyD88 and MyD88 in other species of vertebrates share similar structural characteristics, genomic structures, and flanking genes, suggesting that MyD88 is structurally conserved in different phyla of vertebrates ranging from fish to mammals. Moreover, Xt-MyD88 was widely expressed in different organs/tissues, and was induced by poly(I:C) in spleen, kidney, and liver. Importantly, overexpression of Xt-MyD88 triggered a marked activation of both NF-κB promoter and interferon-stimulated response elements (ISREs), implying that it may be play important roles in inflammatory responses of amphibians. The research represents the first characterization on the immune functions of amphibian MyD88, and reveals considerable functional conservation of MyD88 in early tetrapods.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , Animais , Xenopus/genética , Xenopus/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Sequência de Aminoácidos , NF-kappa B/genética , NF-kappa B/metabolismo , Evolução Biológica , Mamíferos/metabolismo
16.
Natl Sci Rev ; 10(3): nwac264, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915366

RESUMO

Topological order is a new quantum phase that is beyond Landau's symmetry-breaking paradigm. Its defining features include robust degenerate ground states, long-range entanglement and anyons. It was known that R and F matrices, which characterize the fusion-braiding properties of anyons, can be used to uniquely identify topological order. In this article, we explore an essential question: how can the R and F matrices be experimentally measured? We show that the braidings, i.e. the R matrices, can be completely determined by the half braidings of boundary excitations due to the boundary-bulk duality and the anyon condensation. The F matrices can also be measured by comparing the quantum states involving the fusion of three anyons in two different orders. Thus we provide a model-independent experimental protocol to uniquely identify topological order. By using quantum simulations based on a toric code model with boundaries encoded in three- and four-qubit systems and state-of-the-art technology, we obtain the first experimental measurement of R and F matrices by means of an NMR quantum computer at room temperature.

17.
Nat Commun ; 14(1): 592, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737606

RESUMO

The great challenge for the growth of non-centrosymmetric 2D single crystals is to break the equivalence of antiparallel grains. Even though this pursuit has been partially achieved in boron nitride and transition metal dichalcogenides (TMDs) growth, the key factors that determine the epitaxy of non-centrosymmetric 2D single crystals are still unclear. Here we report a universal methodology for the epitaxy of non-centrosymmetric 2D metal dichalcogenides enabled by accurate time sequence control of the simultaneous formation of grain nuclei and substrate steps. With this methodology, we have demonstrated the epitaxy of unidirectionally aligned MoS2 grains on a, c, m, n, r and v plane Al2O3 as well as MgO and TiO2 substrates. This approach is also applicable to many TMDs, such as WS2, NbS2, MoSe2, WSe2 and NbSe2. This study reveals a robust mechanism for the growth of various 2D single crystals and thus paves the way for their potential applications.

18.
Phys Rev Lett ; 130(3): 030603, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763397

RESUMO

Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits. In many cases, such qubits are actually made out of multilevel systems but with only two states being used for computational purpose. While such a strategy has the advantage of being in line with the common binary logic, it in some sense wastes the ready-for-use resources in the large Hilbert space of these intrinsic multidimensional systems. Quantum computation beyond qubits (e.g., using qutrits or qudits) has thus been discussed and argued to be more efficient than its qubit counterpart in certain scenarios. However, one of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge. In this Letter, we propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits. Using a tunable coupler to control the cross-Kerr coupling between two qutrits, our scheme realizes a two-qutrit conditional phase gate with fidelity 89.3% by combining simple pulses applied to the coupler with single-qutrit operations. We further use such a two-qutrit gate to prepare an EPR state of two qutrits with a fidelity of 95.5%. Our scheme takes advantage of a tunable qutrit-qutrit coupling with a large on:off ratio. It therefore offers both high efficiency and low crosstalk between qutrits, thus being friendly for scaling up. Our Letter constitutes an important step toward scalable qutrit-based quantum computation.

19.
Phys Rev Lett ; 130(4): 046701, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763421

RESUMO

A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and a yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counterpropagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results demonstrate nonlocal detection of two separately propagating magnons emerging from one common source that may enable quantum entanglement between distant magnons for quantum information applications.

20.
Nature ; 614(7946): 95-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631612

RESUMO

Carbon structures with covalent bonds connecting C60 molecules have been reported1-3, but their production methods typically result in very small amounts of sample, which restrict the detailed characterization and exploration necessary for potential applications. We report the gram-scale preparation of a new type of carbon, long-range ordered porous carbon (LOPC), from C60 powder catalysed by α-Li3N at ambient pressure. LOPC consists of connected broken C60 cages that maintain long-range periodicity, and has been characterized by X-ray diffraction, Raman spectroscopy, magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, aberration-corrected transmission electron microscopy and neutron scattering. Numerical simulations based on a neural network show that LOPC is a metastable structure produced during the transformation from fullerene-type to graphene-type carbons. At a lower temperature, shorter annealing time or by using less α-Li3N, a well-known polymerized C60 crystal forms owing to the electron transfer from α-Li3N to C60. The carbon K-edge near-edge X-ray absorption fine structure shows a higher degree of delocalization of electrons in LOPC than in C60(s). The electrical conductivity is 1.17 × 10-2 S cm-1 at room temperature, and conduction at T < 30 K appears to result from a combination of metallic-like transport over short distances punctuated by carrier hopping. The preparation of LOPC enables the discovery of other crystalline carbons starting from C60(s).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...